## **Discrete Mathematics**

#### Prepared by :Miss Hanan hardan

## **Course Contents**

#### Logic

- Sets and Set Operations
- Integers, Division and Matrices
- Relations
- Functions
- Sequences and summation
- Graphs
  - > Trees

## Section 1.1: The Foundations: Logic

- **Mathematical Logic** is a tool for working with compound statements
- Use of logic
  - In mathematics:
    - to prove theorems
  - In computer science:
    - to prove that programs do what they are supposed to do

# Section 1.1: Propositional Logic

### **Definition of a Proposition**

- **Proposition** is a declarative statement (**that declares a fact**)
- **Proposition** is a statement that is either **True** (T) or **False** (F), but not both
- **Propositions** can be denoted by **Letters** (**p**, **q**, **r**, **.**)
  - True value can be denoted by T.
  - False value can be denoted by F.

**Note: Commands and questions are not propositions.** 

#### **Examples of Propositions**

- The following are **all** propositions:
  - "It is raining" (In a given situation)
  - "Amman is the capital of Jordan"
  - "1 + 2 = 3"
  - -1 + 1 = 4. (False) since, 1 + 1 = 2
- But, the following are **NOT** propositions:
  - "Who's there?" (Question)
  - "La la la la la." (Meaningless)
  - "Just do it!" (Command)
  - "1 + 2" (Expression with a non-true/false value)
  - "1 + 2 = *x*" (Expression with unknown value of *x*)
  - C++ is the best language (Opinion)

### **Examples of Propositions**

#### **Q:** Are these propositions?

- 2+2=5
- Every integer is divisible by 12
- Microsoft is an excellent company

### **Examples of Propositions**

- **Propositions** can be:
  - Atomic: consists of single proposition.
  - Compound: consists of one or more propositions connected by logical operators.
  - **P:** Today is Friday. : **F** Atomic
  - -**Q:** 1 + 1 = 2. :**T**
  - $-\mathbf{R}: \mathbf{P} \wedge \mathbf{Q} : \mathbf{F}$

Atomic Atomic Compound

## Some Popular Boolean Operators

| Formal Name            | Nickname | Arity  | Symbol            |
|------------------------|----------|--------|-------------------|
| Negation operator      | NOT      | Unary  |                   |
| Conjunction operator   | AND      | Binary | $\wedge$          |
| Disjunction operator   | OR       | Binary | $\vee$            |
| Exclusive-OR operator  | XOR      | Binary | $\oplus$          |
| Implication operator   | IMPLIES  | Binary | $\rightarrow$     |
| Biconditional operator | IFF      | Binary | $\leftrightarrow$ |

### The Negation Operator

<u>Definition</u>: Let p be a proposition then  $\neg p$  is the **negation** of p (Not p, it is not the case that p).

EX: If P = "London is a city."

then  $\neg p$  = "London is **not** a city" or " it is not the case that London is a city"



## The Conjunction Operator

<u>Definition</u>: Let *p* and *q* be propositions, the proposition "*p*  **AND** *q*" denoted by  $(p \land q)$  is called the **conjunction** of *p* and *q*.

Conjunction is True, if <u>both</u> P and q are true.

e.g. If p = "I will have salad for lunch" and q = "I will have steak for dinner", then  $p \land q =$  "I will have salad for lunch **and** I will have steak for dinner"

Remember: "^" points up like an "A", and it means "AND"

#### **Conjunction Truth Table**

Note that a Operand Result conjunction columns column  $p_1 \wedge p_2 \wedge \ldots \wedge p_n$ q p $p \land q$ of *n* propositions F F F will have  $2^n$  rows F T in its truth table. F T F F Τ Τ Т

"And", "But", "In addition to", "Moreover".

#### The Disjunction Operator

<u>Definition</u>: Let p and q be propositions, the proposition "pOR q" denoted by  $(p \lor q)$  is called the **disjunction** of pand q.

It is True, if <u>any</u> of P and q is true.

• EX: Student who have taken calculus or computer science can take this class

#### **Disjunction Truth Table**

- Note that p \neq q means that p is true, or q is true, or q is true, or true!
- So, this operation is also called inclusive or, because it includes the possibility that both p and q are true.



## **Compound Statements**

- Let *p*, *q*, *r* be simple statements
- We can form other compound statements, such as
  - $\succ (p \lor q) \land r$
  - $\succ p \lor (q \land r)$
  - $\rightarrow \neg p \lor \neg q$
  - $\succ (p \lor q) \land (\neg r \lor s)$
  - > and many others...

## A Simple Exercise

- Let p = "It rained last night",
  - q = "The sprinklers came on last night",
  - r = "The grass was wet this morning".

Translate each of the following into English:

| $\neg p$              | =                                    | "It didn't rain last night"          |
|-----------------------|--------------------------------------|--------------------------------------|
| $r \wedge \neg p$     | =                                    | "The grass was wet this morning, and |
| 1                     |                                      | it didn't rain last night"           |
| $\neg r \lor n \lor$  | a –                                  | "Either the grass wasn't wet this    |
| $P \land P \land Q =$ | morning, or it rained last night, or |                                      |
|                       |                                      | the sprinklers came on last night"   |

#### The Exclusive Or Operator

The binary **exclusive-or** operator " $\oplus$ " (XOR) combines two propositions to form their logical "exclusive or" (exjunction?).

It is True, if <u>any</u> of P and Q is true, but not both.

e.g. p = "I will earn an A in this course" q = "I will drop this course"  $p \oplus q =$  "I will either earn an A in this course, or I will drop it (but not both!)"

#### **Exclusive-Or Truth Table**

- Note that  $p \oplus q$  means that p is true, or q is true, but **not both**!
- This operation is called exclusive or, because it excludes the possibility that both *p* and *q* are true.



## Natural Language is Ambiguous

Note that <u>English</u> "or" can be <u>ambiguous</u> regarding the "both" case!

"Pat is a singer or Pat is a writer"

 $\checkmark$ 

"Pat is a man or Pat is a woman"

Need context to disambiguate the meaning!

For this class, assume "OR" means inclusive.

## The Implication Operator



#### **Implication Truth Table**

•  $p \rightarrow q$  is **false** <u>only</u> when p is true but q is **not** true.



### **The Implication Operator**

- $P \rightarrow Q$  has many forms in English Language:
  - "P implies Q"
  - " If P, Q"
  - "If P, then Q"
  - "P only if Q"
  - "P is sufficient for Q"
  - "Q if P"
  - "Q when P"
  - "Q whenever P"
  - "Q follows from P"

#### Converse, Inverse, Contrapositive

Some terminology, for an implication  $p \rightarrow q$ :

- Its converse is:  $q \rightarrow p$
- Its **inverse** is:  $\neg p \rightarrow \neg q$
- Its contrapositive is:  $\neg q \rightarrow \neg p$

## Example of Converse, Inverse, Contrapositive

Write the converse, inverse and contrapositive of the statement "**if** <u>**it is raining**, **then** <u>**it is cloudy**."</u></u>

| Converse       | Q→P                         | If it is cloudy, then it is            |
|----------------|-----------------------------|----------------------------------------|
|                |                             | raining                                |
| Contrapositive | $\neg Q \rightarrow \neg P$ | If it is <u>not</u> cloudy, then it is |
|                |                             | <u>not</u> raining                     |
| Inverse        | ¬p→¬Q                       | if it is <u>not</u> raining, then it   |
|                |                             | is <u>not</u> cloudy                   |

Note: The negation operation  $(\neg)$  is different from the inverse operation.

## Example of Converse, Inverse, Contrapositive

Proving the equivalence of  $p \rightarrow q$  and its contrapositive using truth tables:

#### Biconditional ↔ Truth Table

- It is denoted by P↔Q, and it is read as "P if and only if Q"
- It is true, if P and Q both have the same truth value.
- Note this truth table is the exact **opposite** of  $\oplus$ 's! Thus, P  $\leftrightarrow$  Q means  $\neg$ (P  $\oplus$  Q)

#### In English:

- "*p* if and only if *q* "
- "If *p*, then *q*, and **conversely**"
- "*p* is **sufficient** and **necessary** for *q* "



## **Examples:**

#### **USING:**

- **P:** John has a cat.
- **Q:** John has a dog.
- **R:** Today is sunny.
- **S:** it rains.
- **T**: I wear my coat.

#### WE CAN BUILD:

- ~**R**: Today is not sunny.
- $\mathbf{P} \wedge \mathbf{Q}$ : John has a cat and a dog.
- $\mathbf{P} \lor \mathbf{Q}$ : John has a cat or a dog.
- $\mathbf{P} \oplus \mathbf{Q}$ : John has a pet; it is either a cat or a dog.
- **S**  $\rightarrow$  **T**: If it rains, I will wear my coat.
- S  $\leftrightarrow$  T: If it rains, I will wear my coat, and conversely

## Truth Tables of Compound Proposition:

- <u>Note:</u> If a compound proposition has n distinct simple components, then it will have 2<sup>n</sup> rows in its truth table, as this is the number of possible combinations of n components, each with 2 possible truth values T or F.
- Precedence of Logical Operators

| Operator                 | Precedence |
|--------------------------|------------|
| ()                       | 1          |
|                          | 2          |
| $\wedge,\vee$            | 3          |
| ightarrow , $ ightarrow$ | 4          |
| Left to Right            | 5          |

## Example: Truth Table of $(p \lor q) \land r$

| р | q | r | $p \lor q$ | $(p \lor q) \land r$ |
|---|---|---|------------|----------------------|
| F | F | F | F          | F                    |
| F | F | Т | F          | F                    |
| F | Т | F | Т          | F                    |
| F | Т | Т | Т          | Т                    |
| Т | F | F | Т          | F                    |
| Т | F | Т | Т          | Т                    |
| Т | Т | F | Т          | F                    |
| Т | Т | Т | Т          | Т                    |

## **Examples:**

Example: The following truth table is used to represent the compound proposition: (P ∧ Q) ∨ (~P)

| Р | Q | $\mathbf{P} \wedge \mathbf{Q}$ | ~P | $(\mathbf{P} \land \mathbf{Q}) \lor (\mathbf{\sim}\mathbf{P})$ |
|---|---|--------------------------------|----|----------------------------------------------------------------|
| Т | Т | Т                              | F  | Т                                                              |
| Т | F | F                              | F  | F                                                              |
| F | Т | F                              | Т  | Т                                                              |
| F | F | F                              | Т  | Т                                                              |

Translation English Sentences into Logical Expressions

• If you are a computer science major or you are not a freshman, then you can access the internet from campus :

is translated to:  $(c \lor \neg f) \rightarrow a$ 

• You got an A in this class, **but** you did not <u>do every</u> <u>exercise in the book</u>.

is translated to:  $P \land \neg Q$ .

Translation English Sentences into Logical Expressions

• **if** <u>it is hot outside buy an ice cream</u>, **and if** <u>you buy an ice</u> <u>cream it is hot outside</u>.

**is translated to:**  $P \rightarrow Q \land Q \rightarrow P \equiv P \leftrightarrow Q$ 

 You can't drive a car if you are a student unless you are older than 18 years old.

```
is translated to: (Q \land \neg R) \rightarrow \neg P
```

## Logic and Bit Operations

• **Bit** has two values: 0, 1

| Truth value | Bit |
|-------------|-----|
| F           | 0   |
| Т           | 1   |

- **Boolean Variable:** a variable that is either true or false.
- - **Bit operation** corresponds to logical connectives:

| Logical Operator | Bit operator |
|------------------|--------------|
| -                | NOT          |
| $\wedge$         | AND          |
| $\vee$           | OR           |
| $\oplus$         | XOR          |
|                  |              |

#### Logic and Bit Operations

- - Bit string: it is a sequence of zero or more bits.
- - String Length: number of bits in the Bit string.
- Find the bitwise AND, bitwise OR, and bitwise XOR of the bit strings 0110110110 and 1100011101. 0110110110
   1100011101

Bitwise AND0100010100Bitwise OR1110111111Bitwise XOR1010101011

## Section 1.2: Propositional Equivalences:

#### Logical equivalence:

Compound propositions that have the same truth values in all possible cases are called logically equivalent.

## Logical Equivalence

•  $\neg p \lor q$  is **logically equivalent** to  $p \to q$ 

| р | q | $\neg p \lor q$ | $p \rightarrow q$ |
|---|---|-----------------|-------------------|
| F | F | Т               | Т                 |
| F | Т | Т               | Т                 |
| Т | F | F               | F                 |
| Т | Т | Т               | Т                 |
## Proving Equivalence via Truth Tables

Example: Prove that  $p \lor q$  and  $\neg(\neg p \land \neg q)$  are logically equivalent.



Propositional Equivalence, Tautologies and Contradictions

• A **tautology** is a compound proposition that is always **true.** 

e.g.  $p \lor \neg p \equiv \mathbf{T}$ 

• A **contradiction** is a compound proposition that is always **false.** 

e.g. 
$$p \land \neg p \equiv \mathbf{F}$$

• Other compound propositions are **contingencies**.

e.g.  $p \rightarrow q$  ,  $p \lor q$ 

# Tautology

Example:  $p \rightarrow p \lor q$ 

| р | q | $p \lor q$ | $p \rightarrow p \lor q$ |
|---|---|------------|--------------------------|
| F | F | F          | Т                        |
| F | Т | Т          | Т                        |
| Т | F | Т          | Т                        |
| Т | Т | Т          | Т                        |

#### Equivalence Laws $\Leftrightarrow$

- Identity:
- Domination:
- Idempotent:

 $p \wedge \mathbf{T} \Leftrightarrow p \quad , \quad p \vee \mathbf{F} \Leftrightarrow p$  $p \vee \mathbf{T} \Leftrightarrow \mathbf{T} \quad , \quad p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$ 

- $p \lor p \Leftrightarrow p$  ,  $p \land p \Leftrightarrow p$
- Double negation:  $\neg \neg p \Leftrightarrow p$
- Commutative:  $p \lor q \Leftrightarrow q \lor p$ ,  $p \land q \Leftrightarrow q \land p$
- Associative:

 $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$  $(p \land q) \land r \Leftrightarrow p \land (q \land r)$ 

## More Equivalence Laws

- Distributive:  $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$  $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- De Morgan's:

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$  $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ 

• Trivial tautology/contradiction:  $p \lor \neg p \Leftrightarrow \mathbf{T}$ ,  $p \land \neg p \Leftrightarrow \mathbf{F}$ 



Augustus De Morgan (1806-1871)

•  $\neg (p \rightarrow q) \Leftrightarrow \neg (\neg p \lor q) \Leftrightarrow p \land \neg q$ 

# Implications / Biconditional Rules

1. 
$$p \rightarrow q \equiv \neg p \lor q$$
  
2.  $\neg (p \rightarrow q) \equiv p \land \neg q$   
3.  $p \rightarrow q \equiv \neg q \rightarrow \neg p$  (contrapositive)  
4.  $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$   
5.  $\neg (p \leftrightarrow q) \equiv p \oplus q$ 

• Example 1. show that  $\neg (P \rightarrow Q)$  and  $P \land \neg Q$  are logically equivalent

$$(\mathbf{P} \rightarrow \mathbf{Q}) \equiv \neg (\neg \mathbf{P} \lor \mathbf{Q})$$
$$\equiv \neg \neg \mathbf{P} \land \neg \mathbf{Q}$$
$$\equiv \mathbf{P} \land \neg \mathbf{Q}$$

• Example 2. show that  $(P \land Q) \rightarrow (P \lor Q)$  is a tautology

 $\neg (P \land Q) \lor (P \lor Q)$  $(\neg P \lor \neg Q) \lor (P \lor Q)$  $(\neg P \lor P) \lor (\neg Q \lor Q)$  $T \lor T$ T

Implication rule De morgan Law Associative and commutative Negation law

Example 3. Show that  $\neg (P \lor (\neg P \land Q))$  and  $(\neg P \land \neg Q)$  are logically equivalent.

$$\neg (P \lor (\neg P \land Q))$$
  

$$\equiv \neg P \land \neg (\neg P \land Q) \text{ De Morgan}$$
  

$$\equiv \neg P \land (\neg (\neg P) \lor \neg Q) \text{ De Morgan}$$
  

$$\equiv \neg P \land (P \lor \neg Q) \text{ Double negation}$$
  

$$\equiv (\neg P \land P) \lor (\neg P \land \neg Q) \text{ Distributive}$$
  

$$\equiv \mathbf{F} \lor (\neg P \land \neg Q) \text{ Negation}$$
  

$$\equiv (\neg P \land \neg Q) \text{ Identity}$$

Example 4: Show that  $\neg (\neg (P \rightarrow Q) \rightarrow \neg Q)$  is a contradiction.

 $\neg (\neg (P \rightarrow Q) \rightarrow \neg Q)$   $\equiv \neg (\neg (\neg P \lor Q) \rightarrow \neg Q) \text{ Equivalence}$   $\equiv \neg ((P \land \neg Q) \rightarrow \neg Q) \text{ De Morgan}$   $\equiv \neg (\neg (P \land \neg Q) \lor \neg Q) \text{ Equivalence}$   $\equiv \neg (\neg P \lor Q \lor \neg Q) \text{ De Morgan}$   $\equiv \neg (\neg P \lor T) \text{ Trivial Tautology}$   $\equiv \neg (T) \text{ Domination}$  $\equiv F \text{ Contradiction}$ 

# Section 1.3: Predicates and Quantifiers

- **Predicates: Statement involving variable**, such as
  - x > 3
  - $\mathbf{x} = \mathbf{y} + \mathbf{3}$

x+y=z

"<u>x is greater than 3</u>" has two parts

<u>First part</u>: x, is a variable.

Second part: "is greater than 3", is a predicate.

"*x* is greater than 3" can be denoted by the **propositional** function P(x).

P(x): x > 3, let x = 4, then P(4) is true,

let x = 1, then P(1) is false.

# Section 1.3: Predicates and Quantifiers

- The statement P(x) is said to be the value of the propositional function P at x.
- Once a value is assigned to x, P(x) becomes a proposition and has a truth value.
- Convention: Lowercase variables x, y, z... denote objects, uppercase variables P, Q, R... denote propositional functions (predicates).
- In general, a statement involving the n variable x1,x2,x3, ....., xn can be denoted by P(x1,x2,x3.....nx).

# Section 1.3: Predicates and Quantifiers

- Ex: Q(x, y): x = y+3Q(3,0): 3 = 0 + 3 T
- Ex: R(X,Y,Z): x+y = zR(1,2,3): 1+2=3 T
- Ex: P(x) = "x is a prime number", P(3) is the proposition "3 is a prime number." T

# Quantifiers

- Quantification expresses the extent to which a predicate is true over a range of elements.
- We will focus on two types of quantification:

Quantification  $\longrightarrow$  Universal Quantification ( $\forall$ ), all Existential Quantification ( $\exists$ ), some

## **Universal Quantification**

- Universal quantification: Tells us that a predicate of P(x) is true for every element a particular domain, called Domain (D) (or the Universes of Discourse (U.D) )
- The notation ∀x P(x) denotes the universal quantification of P(x). It is read as: "for all x P(x)" or "for every x P(x)"
  - $\forall$  : is called the universal quantifier
- For example:
  - For every triangle T, the sum of the angles of T is 180 degrees.

## **Universal Quantification**

- In general: when the elements of UD are x1,x2,x3,...,xn. It follows that ∀x P(x) is the conjunction of: P(x1) ∧P(x2) ∧... P(xn)
- Note: Specifying the UD is important when quantifiers are used.

Let P(x):  $x^2 \ge x$ , Domain is the set {0.5, 1, 2, 3}.

•  $\forall x P(x) \equiv P(0.5) \land P(1) \land P(2) \land P(3)$  $\equiv F \land T \land T \land T$  $\equiv F$ 

## **Universal Quantification**

• Example: What is the truth value of  $\forall x \ (x^2 \ge x)$ .

- If UD is all real numbers, the truth value is false (take x = 0.5, this is called a **counterexample**).

- If UD is the set of integers, the truth value is true.

# Example

Suppose that P(x) is the statement "x + 3 = 4x" where the domain is the set of integers. Determine the truth values of  $\forall x P(x)$ . Justify your answer.

It is clear that P(1) is True, but P(x) is False for every  $x \neq 1$  (take x = 2 as a counterexample). Thus,  $\forall x P(x)$  is **False.** 

## **Existential Quantification**

- Existential Quantification: Tells us that there is one or more element under consideration for which the predicate is true
- $\exists x Q(x)$ : There exists an element x in the universe of discourse such that Q(x) is true.

**In general:** when the elements of UD are x1, x2, x3,..., x<sub>n</sub>. It follows that  $\exists x P(x)$  is the disjunction of:  $P(x1) \lor P(x2) \lor ... P(xn)$ 

Let P(x):  $x^2 \ge x$ , Domain is the set  $\{0.5, 1, 2, 3\}$ .  $\exists x P(x) \equiv P(0.5) \lor P(1) \lor P(2) \lor P(3)$   $\equiv F \lor T \lor T \lor T$  $\equiv T$ 

## **Existential Quantification**

- Example 1: Let Q(x): x = x + 1, Domain is the set of all real numbers:
  - The truth value of  $\exists x Q(x)$  is false (as there is no real x such that x = x + 1).
- Example 2: Let Q(x): x2 = x, Domain is the set of all real numbers:
  - The truth value of  $\exists x Q(x)$  is true (take x = 1).

## Summary

- In order to prove the quantified statement  $\forall x P(x)$  is <u>true</u>
  - It is **not** enough to show that P(x) is true for some  $x \in D$
  - You must show that P(x) is true for every x $\in D$
  - You can show that  $\exists x \neg P(x)$  is false

- In order to prove the universal quantified statement  $\forall x \ P(x)$  is <u>false</u>
  - It is enough to exhibit  $\underline{\text{some }} x \in D$  for which P(x) is false
  - This x is called the **counterexample** to the statement  $\forall x \ P(x)$  is true

## Summary

- In order to prove the existential quantified statement  $\exists x Q(x)$  is <u>true</u>
  - It is enough to exhibit  $\underline{\text{some }} x \in D$  for which Q(x) is true
- In order to prove the existential quantified statement  $\exists x Q(x)$  is <u>false</u>
  - It is **not** enough to show that Q(x) is false for some  $x \in D$
  - You must show that Q(x) is false for every  $x \in D$

# **ORDER OF QUANTIFIER**

| Statement                                                                | When true                                           | When false                                            |
|--------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|
| $ \forall x \forall y P(x, y) \\ \forall y \forall x P(x, y) $           | P(x, y) is true for every<br>pair x, y.             | There is a pair x, y for<br>which P(x, y) is false    |
| ∀x∃y P(x, y)                                                             | For every x, there is a y for which P(x, y) is true | There is x, such that P(x, y) is false                |
| $\exists x \forall y P(x, y)$                                            | There is x for which P(x, y) is true for every y.   | For every x there is a y for which $P(x, y)$ is false |
| $\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y) \end{cases}$ | There is a pair x, y for<br>which P(x, y) is true   | P(x, y) is false for every<br>pair x, y.              |

# Example

Suppose that the universe of discourse of P(x, y) is  $\{1, 2, 3\}$ . Write out the following propositions using disjunctions and conjunctions:

| $\exists x P(x, 2)$               | $P(1,2) \vee P(2,2) \vee P(3,2)$                                                                                                                     |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\forall y P(3, y)$               | $P(3,1) \land P(3,2) \land P(3,3)$                                                                                                                   |
| $\forall x \ \forall y \ P(x, y)$ | $\begin{array}{c} P(1,1) \land P(1,2) \land P(1,3) \land P(2,1) \land P(2,2) \land P(2,3) \land \\ P(3,1) \land P(3,2) \land P(3,3) \end{array}$     |
| $\exists x \exists y P(x, y)$     | $P(1,1) \lor P(1,2) \lor P(1,3) \lor P(2,1) \lor P(2,2) \lor P(2,3) \lor P(3,1) \lor P(3,2) \lor P(3,3)$                                             |
| $\exists x \forall y P(x, y)$     | $\begin{array}{c} (P(1,1) \land P(1,2) \land P(1,3)) \lor (P(2,1) \land P(2,2) \land P(2,3)) \\ \lor (P(3,1) \land P(3,2) \land P(3,3)) \end{array}$ |
| $\forall x \exists y P(x, y)$     | $\begin{array}{l} (P(1,1) \lor P(1,2) \lor P(1,3)) \land (P(2,1) \lor P(2,2) \lor P(2,3)) \\ \land (P(3,1) \lor P(3,2) \lor P(3,3)) \end{array}$     |

# Nesting of Quantifiers

- **Example:** UD: all real numbers
- $\forall x \forall y (x+y=0)$  false
- $\forall \mathbf{x} \exists \mathbf{y} (\mathbf{x}+\mathbf{y}=0) \text{ true (inverse)}$
- $\exists \mathbf{x} \exists \mathbf{y} (\mathbf{x}+\mathbf{y}=0)$  true
- $\exists \mathbf{x} \forall \mathbf{y} (\mathbf{x}+\mathbf{y}=0)$  false

## **Precedence of Quantifiers**

#### Precedence of Quantifiers:

- The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional calculus.
- For example, ∀xP(x) ∨ Q(x) is the disjunction of ∀xP(x) and Q(x).
- In other words, it means  $(\forall x P(x)) \lor Q(x)$  rather than  $\forall x(P(x) \lor Q(x))$ .

• EX1:"Every student in this class has studied math and C++ course".

<u>UD is the students in this class:</u> Translated to:  $\forall x (M(x) \land CPP(x))$ 

#### But if the UD is all people:

"For every person *x*, if *x* is a student in this class then *x* has studied math and C++" Translated to:  $\forall x \ (S(x) \rightarrow M(x) \land CPP(x))$ 

• EX2: "Some student in this class has studied math and C++ course".

<u>UD is the students in this class:</u> Translated to:  $\exists x \ (M(x) \land CPP(x))$ 

But if the UD is all people: Translated to:  $\exists x \ (S(x) \land M(x) \land CPP(x))$ 

- EX3: "Some student in this class has visited Aqaba" UD: student in this class . It means:
   "There is a student x in this class who visited Aqaba" Translated to: ∃ x A(x)
- But if the UD: all people

There is a person x having the properties that x is a student in this class and x has visited Aqaba"

 $\exists x (S(x) \land A(x))$ 

- EX4: No one is perfect  $\forall x \neg P(x)$
- EX5: All your friends are perfect.
  F(x): your friend
  P(x): perfect
  ∀x (F(x) → P(x))

- EX6: Let P(x) be the statement "x can speak French" and Q(x) be the statement "x knows C++". The domain is all students in the school. Express the following statement using quantifiers and logical operator:
- A. No student at your school can speak French or knows c++.  $\forall x \neg (P(x) \lor Q(x))$

B. There is a student at your school who can speak French but does not know C++.

 $\exists x (P(x) \land \neg Q(x))$ 

If Domain: all Students

 $\exists x \ (S(x) \land P(x) \land \neg Q(x))$ 

- Everybody likes somebody."
  - For everybody, there is somebody they like,
    - $\forall x \exists y \text{ Likes}(x,y)$
  - or, there is somebody (a popular person) whom everyone likes?
    - $\exists y \forall x \text{ Likes}(x,y)$

• Exercise: express the statement:

"if a person is a female and is a parent, then this person is someone's mother"

F(x): person is a femaleP(x): person is a parentM(x, y): x is the mother of y

• Solution:

 $\forall x \exists y ( (F(x) \land P(x)) \rightarrow M(x, y) )$ 

Translate the statement "The sum of two positive integers is always positive" into a logical expression.

"For every two integers, if these integers are both positive, then the sum of these integers is positive."

 $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0)),$ 

"The sum of two positive integers is always positive"  $\forall x \forall y \forall y < 0$ 

 $\forall x \forall y (x + y > 0)$ 

Where the domain for both variables consists of all positive integers.

Translate the statement "Every real number except zero has a multiplicative inverse." (A **multiplicative inverse** of a real number x is a real number y such that xy = 1.)

#### Solution:

We first rewrite this as "For every real number x except zero, x has a multiplicative inverse." We can rewrite this as "For every real number x, if  $x \neq 0$ , then there exists a real number y such that xy = 1." This can be rewritten as  $\forall x((x \neq 0) \rightarrow \exists y(xy = 1)).$ 

# Negations

- $\neg \forall x P(x) \equiv \exists x \neg P(x)$   $\neg \exists x Q(x) \equiv \forall x \neg Q(x)$
- Ex1:All Americans eat cheeseburgers --  $\forall x P(x)$ Negation: There is an American who does not eat cheeseburgers  $\exists x \neg P(x)$
- Ex2: Every student in the class has taken calculus.  $\forall x$ P(x)

There is a student in the class who has not taken Calculus.  $\neg \forall x P(x) \equiv \exists x \neg p(x)$
## Negations

 Ex3:There is a student in the class who has taken Calculus ∃x p(x)

Every student in the class has not taken calculus.

 $\neg \exists x P(x) \equiv \forall x \neg p(x)$ 

Ex4: what are the negations of the following statements?

A. 
$$\forall x (x^*x > x)$$

Sol:  $\neg \forall x (x^*x > x) \rightarrow \exists x \neg (x^*x > x) \rightarrow \exists x (x^*x \le x)$ 

B. 
$$\exists x (x * x = 2)$$
  
Sol :  $\neg \exists x (x * x = 2) \rightarrow \forall x \neg (x * x = 2) \rightarrow \forall x (x * x \neq 2)$ 

## Negations

- Example: Show that  $\neg \forall x(P(x) \rightarrow Q(x))$  and  $\exists x(P(x) \land \neg Q(x))$  are logically equivalent.  $\neg \forall x(P(x) \rightarrow Q(x))$ 
  - $\exists x(\neg(P(x) \to Q(x)))$
  - $\exists x(P(x) \land \neg Q(x))$
- Example: Let P(x) is the statement " $x^2 1 = 0$ ", where the domain is the set of real numbers R.
  - The truth value of  $\forall x P(x)$  is **False**
  - The truth value of  $\exists x P(x)$  is **True**
  - $\neg \forall x P(x) \equiv \exists x (x 2 1 \neq 0)$ , which is **True**
  - $\neg \exists x P(x) \equiv \forall x (x 2 1 \neq 0)$ , which is **False**