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Course Contents

 Logic

 Sets and Set Operations

 Integers, Division and Matrices

 Relations

 Functions

 Sequences and summation

 Graphs

 Trees
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Section 1.1: The Foundations: Logic

• Mathematical Logic is a tool for working with compound

statements

• Use of logic

– In mathematics: 

to prove theorems

– In computer science: 

to prove that programs do what they are supposed

to do



Section 1.1: Propositional Logic



Definition of a Proposition

• Proposition is a declarative statement (that declares a fact)

• Proposition is a statement that is either True (T) or False

(F), but not both

• Propositions can be denoted by Letters (p, q, r, ..)

– True value can be denoted by T.

– False value can be denoted by F.

Note: Commands and questions are not propositions.



Examples of Propositions

• The following are all propositions:

– “It is raining”  (In a given situation)

– “Amman is the capital of Jordan”   

– “1 + 2 = 3”

– 1 + 1 = 4. (False) since, 1 + 1 = 2

• But, the following are NOT propositions:

– “Who’s there?” (Question)

– “La la la la la.” (Meaningless)

– “Just do it!” (Command)

– “1 + 2” (Expression with a non-true/false value)

– “1 + 2 = x” (Expression with unknown value of x)

– C++ is the best language    (Opinion)



Examples of Propositions

Q: Are these propositions?

– 2+2=5

– Every integer is divisible by 12

– Microsoft is an excellent company



Examples of Propositions

• Propositions can be:

– Atomic: consists of single proposition.

– Compound: consists of one or more propositions 

connected by logical operators.

– P: Today is Friday.  : F Atomic

– Q: 1 + 1 = 2. : T Atomic

– R: P  Q             : F Compound 



Some Popular Boolean Operators

Formal Name Nickname Arity Symbol

Negation operator NOT Unary ¬

Conjunction operator AND Binary 

Disjunction operator OR Binary 

Exclusive-OR operator XOR Binary 

Implication operator IMPLIES Binary 

Biconditional operator IFF Binary ↔



The Negation Operator

Definition: Let p be a proposition then ¬p is the negation of

p (Not p , it is not the case that p).

EX: If   P = “London is a city.”

then ¬p = “London is not a city” or “ it is not the case that 

London is a city”

The truth table for NOT:
p p 

F T 

T F 
 

 

Operand

column

Result

column



The Conjunction Operator

Definition: Let p and q be propositions, the proposition “p

AND q” denoted by (p  q) is called the conjunction of p

and q.

Conjunction is True, if both P and q are true.

e.g. If p = “I will have salad for lunch” and 

q =  “I will have steak for dinner”, then 

p   q  = “I will have salad for lunch and

I will have steak for dinner”

Remember: “” points up like an “A”, and it means “AND”



• Note that a

conjunction

p1  p2  …  pn

of n propositions

will have 2n rows

in its truth table.

“And”, “But”, “In addition to”, “Moreover”.

Conjunction Truth Table

p q pq  

F F   F  

F T   F  

T F   F  

T T   T  
 

 

Operand 

columns
Result

column



The Disjunction Operator

Definition: Let p and q be propositions, the proposition “p

OR q” denoted by (p  q) is called the disjunction of p

and q.

It is True, if any of P and q is true.

• EX:   Student who have taken calculus or computer 

science can take this class



• Note that p  q means

that p is true, or q is

true, or both are true!

• So, this operation is

also called inclusive or,

because it includes the

possibility that both p and q are true.

Disjunction Truth Table

p q  pq  

F F    F  

F T    T  

T F    T  

T T    T  
 

 

Note the

differences

from AND



Compound Statements

• Let p, q, r be simple statements

• We can form other compound statements, such as

 (p  q)  r

 p  (q  r)

 ¬p  ¬q

 (p  q)  (¬r  s)

 and many others…



A Simple Exercise

Let   p  = “It rained last night”, 

q  = “The sprinklers came on last night” ,

r  = “The grass was wet this morning”.

Translate each of the following into English:

¬p = 

r  ¬p = 

¬ r  p  q  =

“It didn’t rain last night”

“The grass was wet this morning, and

it didn’t rain last night”

“Either the grass wasn’t wet this 

morning, or it rained last night, or 

the sprinklers came on last night”



The Exclusive Or Operator

The binary exclusive-or operator “” (XOR) combines two

propositions to form their logical “exclusive or”

(exjunction?).

It is True, if any of P and Q is true, but not both.

e.g. p = “I will earn an A in this course”

q = “I will drop this course”

p  q  = “I will either earn an A in this course, or

I will drop it (but not both!)”



• Note that p  q means

that p is true, or q is

true, but not both!

• This operation is

called exclusive or,

because it excludes the

possibility that both p and q are true.

Exclusive-Or Truth Table

p q pq 

F F F 

F T T 

T F T 

T T F 
 

 

Note the

difference

from OR



Note that English “or” can be ambiguous regarding the “both” 

case!

“Pat is a singer or 

Pat is a writer” 

“Pat is a man or

Pat is a woman” 

Need context to disambiguate the meaning!

For this class, assume “OR” means inclusive.

Natural Language is Ambiguous







The Implication Operator

The implication p  q states that p implies q.

If p is true, then q is true; but if p is not true, then q could be

either true or false.

e.g. Let  p = “You get 100% on the final”

q = “You will get an A”

p  q = “If you get 100% on the final, then

you will get an A”  

hypothesis conclusion



Implication Truth Table

• p  q  is false only when

p is true but q is not true. p q pq 

F F T 

F T T 

T F F 

T T T 
 

 

The 

only

False

case!



The Implication Operator

• P  Q has many forms in English Language:

– "P implies Q"

– " If P, Q"

– "If P, then Q"

– "P only if Q“

– "P is sufficient for Q"

– "Q if P"

– “Q when P"

– “Q whenever  P”

– “Q follows from P”



Converse, Inverse, Contrapositive

Some terminology, for an implication p  q :

• Its converse is: q   p

• Its inverse is: ¬ p  ¬ q

• Its contrapositive is: ¬ q   ¬ p



Example of Converse, Inverse, 

Contrapositive

Write the converse, inverse and contrapositive of  the 

statement “if it is raining, then it is cloudy.”

Note:  The negation operation (¬) is different from the 

inverse operation.

Converse QP If it is cloudy, then it is 

raining

Contrapositive Q  P If it is not cloudy, then it is 

not raining

Inverse pQ if it is not raining, then it 

is not cloudy



Example of Converse, Inverse, 

Contrapositive

Proving the equivalence of p  q and its contrapositive using 

truth tables:

p q q p pq q p  

F F T T T T 

F T F T T T 

T F T F F F 

T T F F T T 
 

 



Biconditional  Truth Table

• It is denoted by PQ, and it is read as "P if and only if 

Q"

• It is true, if P and Q both have the same truth value.

• Note this truth table is the exact opposite of ’s!

Thus, P  Q means ¬(P  Q)

In English: 

• “p if and only if q "

• "If  p, then  q, and conversely"

• “p is sufficient and necessary for q "

p q p  q 

F F T 

F T F 

T F F 

T T T 
 

 



Examples:

USING:

– P: John has a cat.

– Q: John has a dog.

– R: Today is sunny.

– S: it rains.

– T: I wear my coat.

WE CAN BUILD:

– ~R: Today is not sunny.

– P  Q: John has a cat and a dog.

– P  Q: John has a cat or a dog.

– P  Q: John has a pet; it is either a cat or a dog.

– S  T: If it rains, I will wear my coat.

– S  T: If it rains, I will wear my coat, and conversely



Truth Tables of Compound 

Proposition:

• Note: If a compound proposition has n distinct simple 

components, then it will have 2n rows in its truth table, as 

this is the number of possible combinations of n 

components, each with 2 possible truth values T or F. 

• Precedence of Logical Operators

Operator       Precedence

( ) 1

¬ 2

 ,  3 

 ,  4

Left to Right 5



Example: Truth Table of (pq)r

p q r p  q (p  q)  r

F F F F F

F F T F F

F T F T F

F T T T T

T F F T F

T F T T T

T T F T F

T T T T T



Examples:

• Example: The following truth table is used to represent 

the compound proposition: (P  Q)  (~P)

P Q
P  Q ~P (P  Q) 

(~P)

T T T F T

T F F F F

F T F T T

F F F T T



Translation English Sentences into 

Logical Expressions

• If you are a computer science major or you are not a 

freshman, then you can access the internet from campus :

is translated to: (c  f )  a

• You got an A in this class, but you did not do every 

exercise in the book. 

is translated to: P    Q. 



Translation English Sentences into 

Logical Expressions

• if it is hot outside buy an ice cream, and if  you buy an ice 

cream it is hot outside.

is translated to: P  Q  Q P       P  Q

• You can't drive a car if you are a student unless 

you are older than 18 years old.

is translated to: ( QR)P



Logic and Bit Operations

• Bit has two values: 0, 1

• Boolean Variable: a variable that is either true or false.

• - Bit operation corresponds to logical connectives:

Truth value Bit

F 0

T 1

Logical Operator Bit operator









NOT

AND

OR

XOR



Logic and Bit Operations

• - Bit string: it is a sequence of zero or more bits.

• - String Length: number of bits in the Bit string.

• Find the bitwise AND, bitwise OR, and bitwise XOR of

the bit strings 0110110110 and 1100011101.

1010101011XOR Bitwise

1110111111OR Bitwise

0100010100AND Bitwise

__________

1100011101

0110110110



Section 1.2: Propositional 

Equivalences:

• Logical equivalence:

Compound propositions that have the same truth values in 

all possible cases are called logically equivalent. 



Logical Equivalence

• ¬ p  q is logically equivalent to p  q

p q ¬p  q p  q

F F T T

F T T T

T F F F

T T T T



Example: Prove that p  q and (p  q) are logically

equivalent.

p q pq p q p  q (p  q) 

F F F T T T F 

F T T T F F T 

T F T F T F T 

T T T F F F T 
 

 

Proving Equivalence via Truth Tables



Propositional Equivalence, 

Tautologies and Contradictions

• A tautology is a compound proposition that is always

true.

e.g. p  p  T

• A contradiction is a compound proposition that is always

false.

e.g.  p  p   F

• Other compound propositions are contingencies.

e.g. p  q  ,  p  q



Tautology

Example: p  p  q

p q p  q p  p  q 

F F F T

F T T T

T F T T

T T T T



Equivalence Laws 

• Identity:                p  T  p   ,  p  F  p

• Domination:         p  T  T   , p  F  F

• Idempotent:          p  p  p  ,    p  p  p

• Double negation:  p  p

• Commutative: p  q  q  p ,  p  q  q  p

• Associative: (p  q)  r  p  (q  r)

(p  q)  r  p  (q  r)



More Equivalence Laws

• Distributive:   p  (q  r)  (p  q)  (p  r)

p  (q  r)  (p  q)  (p  r)

• De Morgan’s:

(p  q)   p   q

(p  q)   p   q

• Trivial tautology/contradiction:

p  p  T ,   p  p  F

• (p  q) ( p  q)  p   q

Augustus

De Morgan

(1806-1871)



Implications / Biconditional Rules 

1.   p  q  ¬p  q

2. ¬ (p  q)   p  ¬ q

3.   p  q  ¬ q  ¬ p (contrapositive)

4. p  q   (p  q)  (q  p)

5.  ¬ (p  q)  p  q 



Proving Equivalence using Logic 

Laws 

• Example 1. show that   (P Q) and P  Q are logically 

equivalent

(P Q)  (P   Q  )

  P  Q

 P  Q



Proving Equivalence using Logic 

Laws 

• Example 2. show that (P  Q)  (P  Q) is a tautology

 (P  Q)  (P  Q)          Implication rule

(P  Q)  (P  Q)        De morgan Law

(P  P)  (Q  Q)         Associative and commutative

T   T Negation law

T 



Proving Equivalence using Logic 

Laws 

Example 3. Show that  (P  (P  Q)) and

(P  Q) are logically equivalent.

 (P  (P  Q)) 

  P   (P  Q)  De Morgan

  P  ((P)  Q)    De Morgan

  P  (P  Q )    Double negation  

 ( P  P)  ( P  Q)     Distributive

 F  ( P  Q)     Negation

 ( P  Q)   Identity



Proving Equivalence using Logic 

Laws 
Example 4: Show that  ( (P  Q)  Q) is a

contradiction.

 ( (P  Q) Q) 

  ( ( P  Q) Q) Equivalence

  ( (P   Q) Q) De Morgan

  ( (P   Q)  Q) Equivalence 

  ( P  Q  Q) De Morgan

  ( P  T) Trivial Tautology

  (T) Domination

 F Contradiction



Section 1.3: Predicates and 

Quantifiers
• Predicates: Statement involving variable, such as

x > 3

x = y +3

x+y=z

• “x is greater than 3” has two parts

First part: x , is a variable.

Second part: “is greater than 3”, is a predicate.

“x is greater than 3” can be denoted by the propositional

function P(x).

P(x): x > 3 , let x = 4, then P(4) is true,

let x = 1, then  P(1) is false.



Section 1.3: Predicates and 

Quantifiers
• The statement P(x) is said to be the value of the 

propositional function P at x.

• Once a value is assigned to x , P(x) becomes a proposition 

and has a truth value.

• Convention:  Lowercase variables x, y, z... denote objects, 

uppercase variables P, Q, R… denote propositional 

functions (predicates).

• In general , a statement involving the  n variable x1,x2,x3, 

…………, xn can be denoted by P(x1,x2,x3……..nx).



Section 1.3: Predicates and 

Quantifiers
• Ex: Q(x, y): x= y+3                  

Q(3,0):   3 = 0 + 3   T

• Ex: R( X,Y,Z): x+y = z           

R(1,2,3): 1+2=3      T

• Ex: P(x) = “x is a prime number”,

P(3) is the proposition “3 is a prime number.”    T



Quantifiers

• Quantification expresses the extent to which a predicate is 

true over a range of elements.

• We will focus on two types of quantification:

Quantification          Universal Quantification ( ), all

Existential Quantification (), some



Universal Quantification

• Universal quantification: Tells us that a predicate of P(x) is 

true for every element a particular domain, called Domain

(D) (or the Universes of Discourse (U.D) )

• The notation x P(x) denotes the universal quantification 

of P(x). It is read as: “for all x P(x)” or “for every x P(x)” 

 : is called the universal quantifier

• For example: 

– For every triangle T, the sum of the angles of T is 180 

degrees.



Universal Quantification

• In general: when the elements of UD are x1,x2,x3,…,xn. It 

follows that x P(x) is the conjunction of: P(x1) P(x2) 

… P(xn)

• Note: Specifying the UD is important when quantifiers are 

used.

Let P(x): x 2 ≥ x, Domain is the set {0.5, 1, 2, 3}.

• x P(x)  P(0.5)  P(1)  P(2)  P(3)

 F  T  T  T

 F



Universal Quantification

• Example: What is the truth value of 

x (x 2  ≥ x) .

- If UD is all real numbers, the truth value is false (take x =

0.5, this is called a counterexample).

- If UD is the set of integers, the truth value is true.



Example

Suppose that P(x) is the statement “x + 3 = 4x”

where the domain is the set of integers. Determine

the truth values of x P(x). Justify your answer.

It is clear that P(1) is True, but P(x) is False for

every x ≠ 1 (take x = 2 as a counterexample). Thus,

x P(x) is False.



Existential Quantification

• Existential Quantification: Tells us that there is one or

more element under consideration for which the predicate is

true

•  x Q(x): There exists an element x in the universe of

discourse such that Q(x) is true.

In general: when the elements of UD are x1, x2, x3,…, xn. It

follows that  x P(x) is the disjunction of: P(x1)  P(x2)  …

P(xn)

Let P(x): x 2 ≥ x, Domain is the set {0.5, 1, 2, 3}.

 x P(x)  P(0.5)  P(1)  P(2)  P(3)

 F  T  T  T

 T



Existential Quantification

• Example 1: Let Q(x): x = x + 1, Domain is the set of all

real numbers:

- The truth value of  x Q(x) is false (as there is no real x

such that x = x + 1).

• Example 2: Let Q(x): x2 = x, Domain is the set of all real

numbers:

- The truth value of  x Q(x) is true (take x = 1).



Summary

• In order to prove the

quantified statement

x P(x) is true

– It is not enough to

show that P(x) is true

for some x  D

– You must show that

P(x) is true for every x

 D

– You can show that  x

 P(x) is false

• In order to prove the

universal quantified

statement x P(x) is

false

– It is enough to exhibit

some x  D for which

P(x) is false

– This x is called the

counterexample to the

statement x P(x) is

true



Summary

• In order to prove the

existential quantified

statement  x Q(x) is

true

– It is enough to exhibit

some x  D for which

Q(x) is true

• In order to prove the

existential quantified

statement  x Q(x) is

false

– It is not enough to

show that Q(x) is false

for some x  D

– You must show that

Q(x) is false for every

x  D



ORDER OF QUANTIFIER

59

Statement When true When false

xy P(x, y)

yx P(x, y)

P(x, y) is true for every 

pair x, y.

There is a pair x, y for 

which P(x, y) is false

xy P(x, y) For every x, there is a y 

for which P(x, y) is true

There is x, such that P(x, y) 

is false

xy P(x, y) There is x for which P(x, 

y) is true for every y.

For every x there is a y for 

which P(x, y) is false

xy P(x, y)

yx P(x, y)

There is a pair x, y for 

which P(x, y) is true

P(x, y) is false for every 

pair x, y.



Example 

Suppose that the universe of discourse of P(x, y) is {1, 2, 3}.

Write out the following propositions using disjunctions and

conjunctions:

x P(x, 2) P(1,2)  P(2, 2)  P(3, 2)

y P(3, y) P(3,1)  P(3,2)  P(3,3)

x y P(x, y) P(1,1)  P(1,2)  P(1,3)  P(2,1)  P(2,2) P(2,3) 

P(3,1)  P(3,2)  P(3,3)

x y P(x, y) P(1,1)  P(1,2)  P(1,3)  P(2,1)  P(2,2) P(2,3) 

P(3,1)  P(3,2)  P(3,3)

x y P(x, y) (P(1,1)  P(1,2)  P(1,3) ) (P(2,1)  P(2,2) P(2,3))

 (P(3,1)  P(3,2)  P(3,3) )

x y P(x, y) (P(1,1)  P(1,2)  P(1,3) )  (P(2,1)  P(2,2) P(2,3))

 (P(3,1)  P(3,2)  P(3,3) )



Nesting of Quantifiers

• Example: UD: all real numbers

• x y (x+y = 0)   false

• x y (x+y = 0) true  (inverse)

•  x y (x+y = 0) true

• x y (x+y = 0) false 



Precedence of Quantifiers

• Precedence of Quantifiers:

• The quantifiers ∀ and ∃ have higher precedence than all 

logical operators from propositional calculus. 

• For example, ∀xP(x) ∨ Q(x) is the disjunction of ∀xP(x) 

and Q(x). 

• In other words, it means (∀xP(x)) ∨ Q(x) rather than 

∀x(P(x) ∨ Q(x)).



Translation English Sentences into 

Logical Expressions

• EX1:“Every student in this class has studied math and C++
course”.

UD is the students in this class:

Translated to: x (M(x)  CPP(x))

But if the UD is all people:

“For every person x, if x is a student in this class then x has
studied math and C++”

Translated to: x (S(x)  M(x)  CPP(x))



Translation English Sentences into Logical 

Expressions

• EX2: “Some student in this class has studied math

and C++ course”.

UD is the students in this class:

Translated to: x (M(x)  CPP(x))

But if the UD is all people:

Translated to: x (S(x)  M(x)  CPP(x))



Translation English Sentences into Logical 

Expressions

• EX3: “Some student in this class has visited Aqaba”  

UD: student in this class . It means:

“There is a student x in this class who visited Aqaba”

Translated to:  x A(x)

• But if the UD: all people

There is a person x having the properties that x is a student 

in this class and x has visited Aqaba”

 x (S(x)  A(x))



Translation English Sentences into Logical 

Expressions

• EX4: No one is perfect

x  P(x)

• EX5: All your friends are perfect.

F(x): your friend               

P(x): perfect

x ( F(x)  P(x))



Translation English Sentences into Logical 

Expressions

• EX6: Let P(x) be the statement “x can speak French” and 

Q(x) be the statement “x knows C++”. The domain is all 

students in the school. Express the following statement 

using quantifiers and logical operator:

A. No student at your school can speak French or knows c++.

x  (P(x)  Q(x))

B. There is a student at your school who can speak French but 

does not know C++.

x (P(x)  Q(x)) 

If Domain: all Students

x (S(x)  P(x)  Q(x)) 



Translation English Sentences into Logical 

Expressions

• Everybody likes somebody.”

– For everybody, there is somebody they like,

• x y Likes(x,y)

– or, there is somebody (a popular person) whom 

everyone likes?

• y x Likes(x,y)
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Translation English Sentences into Logical 

Expressions

• Exercise: express the statement:

“if a person is a female and is a parent, then this person is 
someone’s mother”

F(x): person is a female

P(x): person is a parent

M(x, y): x is the mother of y

• Solution: 

x y ( (F(x)  P(x)) M(x, y) )



Translation English Sentences into Logical 

Expressions

Translate the statement “The sum of two positive integers is 

always positive” into a logical expression.

“For every two integers, if these integers are both positive, 

then the sum of these integers is positive.”

∀x∀y((x > 0) ∧ (y > 0) → (x +y > 0)),

“The sum of two positive integers is always positive”

∀x∀y(x +y > 0)

Where the domain for both variables consists of all positive 

integers.



Translation English Sentences into Logical 

Expressions

Translate the statement “Every real number except zero has a 

multiplicative inverse.” (A multiplicative inverse of a real 

number x is a real number y such that xy = 1.)

Solution: 

We first rewrite this as “For every real number x except 

zero, x has a multiplicative inverse.” We can rewrite this 

as “For every real number x, if x ≠ 0, then there exists a 

real number y such that xy = 1.” This can be rewritten as

∀x((x ≠ 0) → ∃y(xy = 1)).



Negations

•   x P(x) ≡  x   P(x)

•   x Q(x) ≡  x   Q(x)

• Ex1:All Americans eat cheeseburgers -- x P(x)

Negation: There is an American who does not   eat 

cheeseburgers  x  P(x)

• Ex2:  Every student in the class has taken calculus.   x 

P(x)

There is a student in the class who has not taken Calculus. 

 x P(x) x  p(x)



Negations

• Ex3:There is a student in the class who has taken Calculus 

x p(x)

Every student in the class has not taken calculus.  

 x P(x)  x  p(x)

Ex4: what are the negations of the following statements?

A.  x (x*x >x) 

Sol: x (x*x >x)   x  (x*x > x)  x (x*x  x)

B. x (x *x = 2)

Sol : x (x *x = 2)  x  (x *x = 2)  x (x *x  2



Negations

• Example: Show that ￢∀x(P(x) → Q(x)) and 

∃x(P(x)∧￢Q(x)) are logically equivalent.

￢∀x(P(x) → Q(x))

∃x(￢(P (x) → Q(x)))

∃x(P(x)∧￢Q(x))

• Example: Let P(x) is the statement “x2 − 1 = 0”, where the

domain is the set of real numbers R.

- The truth value of  x P(x) is 

- The truth value of   x P(x) is

  x P(x) ≡  x (x 2 − 1 ≠ 0) , which is 

  x P(x) ≡  x (x 2 − 1 ≠ 0) , which is 

False

False

True

True


